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Known results in transfinite set theory appear to anticipate many aspects of 
modem particle physics. Extensive and powerful analogies exist between the very 
curious theorems on "paradoxical" decompositions in transfinite set theory, and 
hadron physics with its underlying quark theory. The phenomenon of quark 
confinement is an example of a topic with a natural explanation via the 
analogies. Further, every observed strong interaction hadron reaction can be 
envisaged as a paradoxical decomposition or sequence of paradoxical decomposi- 
tions. The essential role of non-Abelian groups in both hadron physics and 
paradoxical decompositions is one mathematical link connecting these two areas. 
The analogies suggest critical roles in physics for transfinite set theory and 
nonmeasurable sets. 

1. TRANSFINITE SET THEORY AND PHYSICS 

Transfinite set theory has a peculiar place in mathematical physics. 
Modern analysis, on which mathematical physics rests substantially, in turn 
draws on the abstract theory of sets in many ways--e.g., for the structure of 
the number system, for measure theory, for set theoretic topology, and for 
other tools. In this sense, set theory underlies physics. In contrast, the 
objects of concern to transfinite set theory are not generally considered to 
be the objects encountered in physics. For this one would have to introduce 
real infinities into physics, and the implications of such are rarely discussed. 

This paper explores connections between the objects of physics and the 
objects of set theory. Section 2 shows that strong and unexpected analogies 
exist between hadron physics with its underlying quark theory and certain 
theorems of transfinite set theory on "paradoxical" decompositions of solid 
objects in R 3. In effect, hadron physics provides a model satisfying these 
theorems, if we suppose the particles of hadron physics to be composed of 
transfinitely many constituents, as is the case for their set theoretic counter- 
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parts (solid objects in R3). Section 3 includes a table summarizing the 
analogies, and notes some mathematical implications from the analogies. 

The analogies give directly a large number of known physical results 
(Section 2), and suggest additional ones testable in principle (Section 3). The 
quark color label and the phenomenon of quark confinement are examples 
of topics which have immediate explanations via analogies with the decom- 
position theorems. 

Many mathematicians regard "paradoxical" decompositions as rather 
troubling and abstract curiosities (Section 3). The physicist, familiar with 
phenomena such as pair creation, no longer considers these phenomena 
strange. The aspect of "paradoxical" decompositions probably most inter- 
esting to the physicist is that these decompositions simulate, at a geometric 
level, such familiar phenomena of particle physics. The mathematician's 
"paradoxes" contain an organizing principle for hadron behavior and link 
transfinite theory with physical objects and events. These links apparently 
give another remarkable instance of purely geometrical constructs playing 
an important role in physical laws. Other instances of such roles are noted 
by Yang (Yang, 1981). 

2. PARADOXICAL DECOMPOSITIONS--  ROLE IN 
PARTICLE PHYSICS 

Any respectable hadron and quark description should at least account 
for (i) hadrons being two-quark or three-quark combinations, (ii) inhibitions 
against hadrons containing more than three quarks, (iii) hadron-quark 
properties producing quark confinement, and (iv) distinguishable quarks 
satisfying the exclusion principle. 

This paper shows how these and other features of quark theory can be 
regarded as immediate consequences of a single known existence theorem of 
transfinite set theory under a suitable, if speculative, interpretation. Ad- 
ditional theorems of this kind lead to other familiar results of hadron 
physics. 

The theorems used are the astonishing paradoxical decomposition 
theorems which arise in R ' ,  m >/3. Decomposition involves starting with 
some initial bounded solid body, partitioning or cutting that solid into a 
finite number, n, of pieces, and then reassembling those pieces into some 
final bounded solid or (disjoint) solids. The pieces are to undergo Euclidean 
transformations only, and so are one-to-one congruent in the sense of 
elementary geometry in the initial and final solids. The singular aspect of 
paradoxical decompositions is that volume of the solids need not be 
conserved in the decomposition and reassembly, although isometry in the 
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pieces is preserved. For this reason, the theorems are often considered 
highly nonintuitive (or "paradoxical").  The pieces are generally nonenumer- 
able, nonmeasurable sets to give volume nonconservation; otherwise ad- 
ditivity of measure would be violated. The exotic nonmeasurable sets 
required need the axiom of choice of set theory for their very intricate 
formulation. 

Decomposit ion theorems then mimic mathematically physical processes 
such as particle production and particle annihilation. Theorem 1 shows 
some of this interesting behavior. The theorem is one of the results known 
as the "Banach-Tarsk i  paradoxes ' ' t  (Banach and Tarski, 1924). 

Theorem 1. A solid sphere S in R 3 can be cut into a finite number, 
n, of pieces which can be reassembled into two disjoint solid copies 
of the sphere S, each copy having the same size as the initial S. 

This process can be repeated on one or both copies of S. Consequently, 
any number  of copies of S can be produced from one initial S. The 
decomposit ion process is symbolized by " - "  here; as a mathematical 
operator  - is symmetric and transitive. Theorem 1 is then S -  S + S; a 
corollary from symmetry of - is S + S - S. (From Theorem 1 follows the 
even more startling Theorem 1': If X, Y are any bounded solids, X - Y .  
Thus decomposition can produce solid bodies which are bounded but of 
arbitrary size and shape. In particular, Theorem 1' allows each of the three 
spheres of Theorem 1 to have a different radius.) 

The values of n in Theorem 1 can be calculated, von Neumann (v. 
Neumann,  1928) 2 gave n = 9; Sierpinski (Sierpinski, 1945) found n = 8. R. 
Robinson (Robinson, 1947) finally gave n = 5, which he also proved is the 
best possible result (the minimum decomposit ion)) Theorem 2 is the very 
remarkable Robinson result. 

I Proofs of the paradoxical decomposition theorems are quite detailed. An essential technical 
point occurs at an intermediate proof stage. Here one has characterized a nonenumerable set 
of points, A, as comprised of a nonenumerable number of different sets, each of which is 
infinite but enumerable. Then use of the axiom of choice of set theory allows exact 
characterization of A by a single new nonenumerable set, constructed by random selection of 
just one point from each of the initial nonenumerably many different sets, and a generating 
rule which is applied enumerably many times to that single new set, to reproduce A. If one 
accepts the axiom of choice, the proofs of the decomposition theorems are impeccable, no 
matter how strange the consequences seem. The feature of random selection in the axiom of 
choice makes the proofs nonconstructive. 

2 This paper gives several new paradoxical decompositions, and most importantly stresses the 
essential role of the underlying group of motions. 

3Proofs for any minimal n' appropriate for the general theorem 1' are unknown, though 
bounds can always be estimated. 
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Theorem 2. A solid sphere S can be cut in five pieces; three pieces 
can be reassembled into one copy of S, the other two pieces into a 
second copy of S. Pieces within each copy have no congruence 
relations among themselves, and so the pieces are distinguishable. 
One congruence relation exists between the pieces of the two copies. 

Now speculatively we can interpret in Theorem 2 pieces as quarks, 
congruence of pieces as indistinguishability of quarks, spheres as hadrons. 
Theorem 2 then captures the hadron-quark features of the initial paragraph 
of this section. Two- and three-quark hadrons reflect the minimum decom- 
position of Theorem 2; the nonminimum decompositions of von Neumann 
and Sierpinski would allow four-, five-, and six-quark hadrons, so that a 
"min imum decomposition principle," which warrants sharper characteriza- 
tion, seems generally at work; quark confinement effectively follows from 
the minimum decomposition of Theorem 2 and the trivial generalization 
that for no n > 5 is a sphere decomposition possible in which any sphere 
copy contains only one piece; and, the distinguishability of the pieces within 
the copies is the equivalent of the quark color label. [The standard color 
assignment giving at any one time one common color (anticolor) between 
mesons and baryons (antibaryons) also has its exact analog in Theorem 2.] 

Let us associate in Theorem 2 the two-piece copy with a meson, the 
three-piece copy with a baryon. In an obvious notation in which $2 is a 
two-piece copy, etc., Theorem 2 reads S - S  2 + S 3. The copies themselves 
are subject to Theorem 2, so S 2 - S  2 + $3, S 3 - S  2 + S 3. In particles, we 
assign standard quantum numbers to the pieces, just as they are assigned to 
quarks; impose (for brevity of presentation) conservation laws for only 
charge and baryon number. When particles are not explicitly named, "2"  
indicates a meson, "3"  a baryon; a bar over any particle symbol (e.g., 3) 
denotes the corresponding antiparticle. 

The decomposition S 3 - S 2 + S 3 then is interpretable as an equivalent 
particle reaction, and the decomposition operator - acts like the particle 
reaction operator ~ ; thus 3 --, 2 + 3. Decomposition symmetry (S 2 + S 3 
$3) necessarily gives also 2 + 3--* 3. The other set of equivalent reactions 
from Theorem 2 (2 ~ 2 + 3, 2+  3--* 2) is now forbidden by baryon con- 
servation. Allowed reactions from Theorem 2 then correspond to the large 
class of Yukawa reactions (P  ~ ~r + + N --* P; etc.). The interesting feature 
here is that symmetry of the decomposition operator - automatically 
mandates that the equivalent particle reactions must be able to go in both 
directions. Microreversibility must hold and the particle reaction operator 
can be written as ,--,. Symmetry of - thus requires for particles precisely 
the possibility of temporary violations of energy conservation which is 
permitted by the uncertainty principle of physics, and which is associated 
with virtual particles. 
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In subsequent examples, this analog of virtual reactions in the decom- 
position theorems will be seen as essential in order for decompositions to 
replicate general hadron reactions. As descriptive models, the decomposi- 
tion theorems cannot be expected to give quantitative dynamical results, 
such as the energies involved, without further assumptions. However, in a 
typical decomposition, such as decomposition of one initial sphere into M 
pieces from which N copies of that initial sphere are producible-- this  is 
always possible from applications of Theorem 1 and the transitivity of 
- - - i t  is natural  to correlate the energy needed with N and M; and to 
assume that if the N sphere copies are decomposed and reassembled into 
the single initial sphere--which is always possible because of symmetry of 
- - - t h a t  energy is recovered. In this view a minimum decomposition 
principle would have kinship with a minimum energy principle. 

The Robinson result is generalized by Theorem 3, due to Mycielski 
(Mycielski, 1955). 

Theorem 3. A solid sphere S can be cut into 2 + 3 ( / - 1 )  pieces, 
1 < 1 ~< 2 ~o, which can be reassembled into l copies of S - - o n e  two 
piece copy and l -  1 three piece copies. 

Theorem 3 allows a decomposition such as: S 2 - S 2 + $3+  S 3. This can 
appear  in equivalent particle reaction form as 2 ~ 2 + 3 + 3. Charge and 
baryon conservation are then satisfiable in meson transformations. Theorem 
3 now permits baryon pairs to be "created" in decomposit ions--e.g. ,  the 
3,3 pair  in 2 ~ 2 + 3 + 3 - -  and "annihilated," since the symmetry of - 
allows also S 2 + S 3 + S 3 - S 2 - i . e . ,  2 + 3 + 3 ~ 2. In a similar way repeated 
applications of Theorem 2 allow meson pairs to be created and annihilated 
- -e .g . ,  S 3 - S  2 + S  3 (Theorem 2); S 3 - S  2 + S  2 + S  3 (Theorem 2 on the 
right-hand $3), which in particle form satisfying conservation laws can be 
written 3 ---, 2 + 2 + 3, so that a 2, 2 pair appears. This sequence may, e.g., be 
realized as follows: P ---, 7r + + N---, ~r + + I t -  + P, a ~r +, ~r- pair appearing. 

Theorems 2 and 3 combined give other direct analogies with hadron 
theory. As one example, from Theorem 3 typically (S 2 or S 3) - S 2 + S 3 + S 3 
+ - - . ;  then Theorem 2 applied to each copy and transitivity of - lead 
with rearrangement  very generally to (S  2 or $3) - S 2 + S 2 + S 2 + �9 .- + S 3 + 
S 3 + S 3 + �9 �9 �9 This can always be written as an equivalent particle reaction 
satisfying conservation laws; for instance, (2 or 3 ) ~  2 + 2 + 2 +  - - -  + (2  or 
3 )+  3 + 3 + 3 + 3 + - �9 �9 The decomposition theorems thus lead to the virtual 
hadronic  particle clouds (mesons plus baryon-an t iba ryon  pairs) around 
" b a r e "  hadrons,  virtual clouds permitted by quantum mechanics and sensed 
by experiments.  

Another  example treats decompositions and equivalent reactions (sub- 
ject  to conservation laws) side-by-side. Thus, Theorem 3 gives S 2 - S 2 + S 3 
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+ S 3 (e.g., ~r ~ --* ~r ~ + P + P) ;  Theorem 2 and symmetry  of  - give S~_ + 
S 3 - S 3 (~r ~ + P --, P) ;  this result and transitivity of  - give S 2 - S 3 + S 3 
(~r ~ ~ P + P) .  Then, compar ing  ~r ~ + P ---, P and rr ~ ---, P + P indicates 
that  it is consis tent  to transpose a particle in a reaction as the corresponding 
antiparticle.  One  then also gets consistently P = ~; and from this 7r ~ = if0. 

A third example interprets an observed collision reaction such as: 
P + P ---, P + P + P + ff via decomposit ions.  Conventionally,  a P,  P pair is 
here regarded as created from the vacuum. An alternative view uses the 
decompos i t ion  theorems in the following way. The " m i n i m u m  decomposi-  
t ion" applies Theorem 3 to just  one $3: S 3 + S  3 - S  3 + S  2 + S  3 + S  3 + S  3 
(i.e., P + P ~ P + ~ ' ~  symmetry  of  - in Theorem 2 gives 
S z + S 3 - S 3 (It ~ + P ---, P) ;  finally, f rom transitivity of - ,  S 3 + S 3 - S 3 + 
S 3 + S 3 + S 3 ( P  + P ---, P + P + P + if). Another  (nonminimum) decomposi-  
t ion would apply  Theorem 2 to one S 3, Theorem 3 to the other S 3 to get 

S 3 + S 3 ~ S 2 + S 3 - q - a 2 - . I - S 3 q - S 3 q - S 3  ( P + e ~ ~ 1 7 6  

where now two ~r ~ could form and disappear;  and so on, more a n d / o r  
different  particles forming and disappearing. 

A final example is the meson reaction: ~o --* ~r ~ + 7r + + 7r-, seen through 
a sequence of  intermediate virtual reactions: S 2 - S 2 + S 3 + S 3, (e.g., r ~ ~r ~ 
+ P + P ,  Theorem 3); S 2 - S z + S z + S 3 + S 2 + S  3 ( ~ o ~ q r ~  - 
+ , ~ ,  Theorem 2 on the $3); S , _ - $ 2 + $ 2 + $ 2 + $ 3 + S  3 ( r 1 7 6  
~r- + N + N, rearrangement);  finally S 2 - S 2 + S 2 + S 2 ( o~ --* ~r ~ + rr + + 7r- ,  

Theorem 3 and symmetry  of  - giving S 2 + S 3 + S 3 - S 2 or ~r- + N + N ---, 
7/ '-).  

These examples show how each observed strong interaction hadron 
react ion can be interpreted as a paradoxical  decomposi t ion or as well- 
defined sequences of paradoxical  decomposit ions.  

3. S U M M A R Y  A N D  A D D I T I O N A L  I M P L I C A T I O N S  

We have curious and remarkable outcomes.  Theorems 2 and 3, and 
propert ies  of  - ,  mirror established general features of hadron physics. A 
substant ia l ly  interesting port ion of particle physics is simulated by the 
paradoxica l  decomposi t ion  theorems. 

Some principal  analogies of  Section 2 are summarized by Table I. 
N o  k n o w n  experiments seem inconsistent with the speculative interpre- 

ta t ion in Theo rem  2 of pieces as quarks and spheres as hadrons,  and some 
further  possible consequences are suggested. For  example, rms charge radii 
for p ro tons  and pions are different; but  those data  reflect measurements  of  
physical  hadrons  with their extended virtual clouds. Experiments indicating 
the size, and  perhaps size equivalence in some sense, of  all "ba re "  hadrons  
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Aspects of decomposition theorems: link with these aspects of hadron physics 

Decomposit ion operator - 
Symmetry of - 
Transitivity of - 
Theorem 1 

Generate  copies from initial body 

Theorem 2 (Robinson minimum 
decomposition) 

" M i n i m u m "  decomposition principle 
Theorem 2, and no possible 

n - 1, 1 split 
Distinguishability of pieces 

in Theorem 2 
One congruence between Theorem 

2 copies 
Theorem 2 plus symmetry of - 
Theorem 3 
Decomposit ions with many copies 
Theorems 2, 3, properties of - 
Multiple paths for decompositions 
Number  of pieces order 

decomposit ion 
(Minimum decomposition path) 
Non-Abel ian groups underlie theory 
Existence of nonmeasurable sets 

All bounded solids generated 
from single initial solid 
(Theorems 1', 2 and 3) 

Particle reaction operator ---* 
Reversibility of ---, (i.e., ,--, ) 
Reaction chains 
Production of many hadrons from single 

hadrons 
Draw particles from physic',.d vacuum 

(particle creation) 
2-quark, 3-quark hadrons 

Inhibits hadrons with /> 4 quarks 
Quark confinement 

Color label 

One common meson /baryon  color label 

Virtual reactions are required 
Baryon pair creat ion/annihi la t ion 
Virtual particle clouds 
Observed hadron reactions 
Multiple reaction paths 
Reaction paths with differing 

probabilities 
(Favored- -most  l ikely--reaction path?) 
Non-Abelian groups underlie theory 
Particle numbers (or volume) not 

conserved 
All particles generatable from one 

particle (" bootstrap hypothesis") 

would be interesting. Size equivalence would be a sufficient condition for 
the interpretation of Theorem 2 as a purely physical theorem (but not a 
necessary condition, because of Theorem 1'). 

�9 The picture of hadron reactions provided by decomposition theorems 
has interesting subdetail. In Theorem 2 the initial sphere must first be 
separated into five pieces which are then reassembled into the two sphere 
copies-- the two sphere copies cannot simply be extracted directly, as it 
were, from the initial sphere. This picture is consistent with the notion that 
hadron reactions have intermediate stages with "unassembled" quarks. In 
Theorem 2 all pieces but one have a nonenumerable number of points. The 
exception is that one piece (i.e., one quark) in the three-piece copy (i.e., in 
the "baryon")  consists of a single point only. This very strongly suggests the 



1204 Augenstein 

remaining pieces (i.e., quarks) physically are composite entities with struc- 
t u r e - - a  prediction in principle amenable to test at very high energies (few 
to many  TeV center-of-mass energy). 

How one should ultimately regard the significance of these analogies is 
unclear. Essential theoretical underpinnings for both hadron physics and 
paradoxical  decompositions are based on non-Abelian group properties (for 
the paradoxical decompositions, the group theoretic issues are clearly treated 
in the referenced von Neumann paper). Existence of analogies therefore 
may possibly be not too surprising. But the analogies could still simply 
reflect fantastic coincidences; or, they could suggest some unsuspected 
aspects of physical reality. 

A conclusion that paradoxical decompositions have counterparts in the 
physical world immediately touches mathematical issues and enhances the 
probabil i ty that axioms of set theory are " t rue ."  Bounded nonenumerable 
nonmeasurable  sets are necessary for the decomposition theorems. Such sets 
are constructed using the axiom of choice (AC), and cannot be constructed 
without AC (Solovay, 1970). But the decomposition theorems are often seen 
as so bizarre as to cause in mathematicians lingering doubts about AC. 
Weaker,  very plausible choice principles exist which do not yield nonmea- 
surable sets, but do permit other agreeable consequences of AC (Moore, 
1982). Existence of the hadron-related analogies selects AC over any other 
choice principle not powerful enough to formulate nonmeasurable sets. 
Only AC in this way leads to physical consequences which accord with 
everyday experiences of hadron physicists. We therefore find support  for a 
mathematical  axiom, AC, from physical arguments; and a direct physical 
role is for the first time found for nonmeasurable sets. 
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